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SUMMARY 
The paper presents applications of a moving grid method to the combined problem of ignition and premixed 
flame propagation in a closed vessel. This method belongs to the general class of adaptive grid techniques for 
the numerical integration of evolutionary partial differential equations and is based on the method of lines 
with variable node position. In the present case the motion of the grid and the solution of the partial 
differential equations are strongly coupled by an implicit formulation. The problem is reduced to an initial 
value problem for a stiff differential-algebraic system. The continuously moving grid is determined by the 
equidistribution of a positive function which depends on the solution of the partial differential equations. 
A differential-algebraic system solver is used for the time integration of the initial value problem. The 
numerical results of the test problems demonstrate the computational efficiency and the capability of the 
method to resolve the main features of the solution. 
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1. INTRODUCTION 

Premixed, laminar flame propagation is a basic topic in combustion modelling. The mechanism 
that drives a premixed flame is a self-sustaining interaction between convection, diffusion and 
chemical reactions within the flame zone. The corresponding mathematical model consists of 
a highly non-linear parabolic initial value problem. This system exhibits a temporal stiffness 
owing to the presence of exponential reaction rate source terms and a spatial stiffness because of 
the large ratio of combustion chamber length to flame thickness. The moving flame front is 
characterized by a region with steep spatial gradients and its velocity depends strongly on the 
processes in the thin flame zone. This is in contrast to purely hydrodynamical fluid flow, e.g. 
shock wave propagation, where the speed of the shock is only influenced by the flow conditions 
outside the shock. These aspects require the application of a non-uniform time-dependent grid 
with a high resolution in the entire flame front and an implicit time discretization.’ 

In recent years, two major approaches using the method of lines have been developed to treat 
these problems. In the first approach the temporal derivatives in the governing equations were 
discretized by finite differences and the resulting boundary value problem was solved.2 This 
method offers the advantage of incorporating the knowledge that has been collected from solving 
elliptic boundary value problems. The results described in the literature concerning non-uniform 
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grids in conjunction with the numerical treatment of two-point boundary value  problem^^.^ can 
be carried over into the development of numerical methods for one-dimensional stiff partial 
differential equations (PDEs). 

This paper follows the second approach, in which the spatial derivatives of the PDE system are 
discretized by finite elements of finite differences. This development is motivated by the availabil- 
ity of sophisticated solvers for differential-algebraic equations, e.g. the extrapolation code 
LIMEX' and the backward difference code DASSL.6 This semidiscretization converts the initial 
boundary value problem into an initial value problem for a differential-algebraic equation (DAE) 
system with a continuous time derivative. The moving finite element (MFE) method belongs to 
this class of methods. It uses a variational formulation of the governing equations, generates an 
ordinary differential equation (ODE) system for the grid points and formulates the physical 
variables in these moving nodes.7 Applications and further investigations of the MFE method can 
be found in References 8-10. A major concept in the MFE method is a penalty function, which 
regularizes the grid movement. This additional tuning of the grid selection seems to be a diminish- 
ing factor for reliability." The method described in Reference 12 uses the DAE formulation with 
a spatial finite difference discretization, a variable number of nodes and a static regridding 
strategy, which can change the order of the DAE system and requires the interpolation of the 
solution values from the old onto the new grid. This procedure interrupts the time-stepping 
process and does not allow higher-order schemes for the temporal discretization in the DAE 
solver. The same problem is discussed in the investigation of method I in Reference 11. 

The numerical method applied in the present paper is based on a moving grid method 
discussed in Reference 11. The grid selection strategy was described in Reference 13 in connection 
with a shock tube and an astrophysical simulation problem. This method consists of a semidis- 
cretization of the governing equation with a fixed number of nodes in a moving co-ordinate 
system, which results in a DAE system for each node. The system is completed by a set of 
quasi-linear implicit ordinary differential equations for the motion of each grid point, which 
depends on the numerical approximation of the solution in the nodes. The grid points are 
distributed in such a way that a given positive function, e.g. the arc length of the solution, is 
equidistributed over the entire region. It must be pointed out that at each time step the new grid is 
calculated simultaneously with the approximated solution of the partial differential equations. 
This fully implicit formulation avoids regridding and interpolation procedures. As a consequence, 
the backward difference DAE solver DASSL can operate with higher-order discretization 
schemes and larger time steps. The computational efficiency is demonstrated by two test 
problems, in which the propagation of a confined flame with full chemistry including ignition and 
extinction was numerically simulated. The method shows the capability to detect regions where 
ignition occurs and the flame front is created. Later on the grid moves with the highly resolved 
propagating combustion front until the flame reaches the wall of the vessel or a homogenous 
ignition of the unburnt gas occurs. 

2. GOVERNING EQUATIONS 

The equations which describe the behaviour of a reacting gas flow include non-linear phenomena 
as, for example, in shock waves and reaction-diffusion  equation^.'^ In the present case the 
formation and propagation of a combustion wave in a slowly reacting environment was studied. 
The deflagration occurs in a heat-conducting gas owing to the initiation of exothermic chemical 
reactions. The conduction of the heat released and the diffusion of highly reactive components 
then lead to the formation of a flame front, which propagates into the unburnt gas mixture. Gas 
dynamic effects are of minor importance in this low-Mach-number regime. This condition 
justifies the assumption of a spatially uniform pressure. The resulting mathematical model for 
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one-dimensional confined flame propagation was derived from the conservation equations of 
species mass, energy, linear momentum and total mass and the equation of state in Lagrangian 
mass co-ordinates. The transformation into the Lagrangian co-ordinate system eliminates the 
convective terms in the partial differential equations and simplifies the numerical treatment. The 
mathematical model considered here consists of the following mixed algebraic and partial 
differential equation system in Lagrangian co-ordinates: 

8T 1 dp 1 N S T  aT +- c pKKcpi -  
at at cp i = l  a* 

8 P  -=O, a* 
az 1 
a$ - P' 

(3) 

(4) 

where O<$<$,,,,  t>O,  i,b is the Lagrangian mass co-ordinate, is time, z is the Eulerian 
co-ordinate, p is pressure, T is temperature, K is the mass fraction of species i, p is the mass 
density, NST is the number of species, M i  is the mole fraction of species i, ii is the molar rate of 
formation of species i, cp, is the specific heat capacity at constant pressure of species i, cp is the 
specific heat capacity at constant pressure of the mixture, i is the thermal conductivity of the 
mixture, 6 is the diffusion velocity of species i, hi is the specific enthalpy of species i, RM is the 
universal gas constant and 4 is the source term for external energy addition. 

The initial and boundary conditions are 

T(0, *)= To(*), 

P ( 0 ,  *)'PO> 

W t ,  0) 
a* 

Y, (O,  $)= &,o($), i =  1, . . . , NST, 

-- - 0, 

= 0, i =  1, . . . , NST, aY,(t, $max) 

a* 
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The vessel in which the combustible gas mixture is enclosed has an infinite slab geometry and 
a length z,,, in Eulerian co-ordinates. The corresponding length in Lagrangian mass 
co-ordinates can be calculated from 

The quantity $(zmax, t )  = $,,, is constant in time owing to the zero-mass-flux condition across the 
boundary for confined gas flow. The boundary conditions describe the fact that the walls are 
adiabatic and the mass flux through the walls is zero. Equations (1H5) have to be completed by 
formulae expressing the thermodynamic and transport properties A, v, cp, cpi, and hi of the gas 
mixture. The reaction chemistry in front of the flame and in the flame zone must be expressed by 
the chemical source term ii of the species i: 

k 

j =  1 

In this equation Rj is the reaction rate of the elementary reaction j and vij is the stoichiometric 
coefficient of species i in the elementary reactionj. R j  has an exponential temperature dependence 
and a polynomial w,-dependence. The source term ii can be determined if the reaction mechanism 
is known. 

In the present case the gas mixture was ignited owing to an artificial energy source term 
a which is defined by 

where 0 < z < z,,, and z, denotes the thickness of the energy source, ti the time interval for energy 
addition and D the density of source energy. The external energy source term has a smoothed-out 
rectangular shape. 

3. DESCRIPTION OF THE MOVING GRID METHOD 

A common feature of adaptive grid methods is to insert or to move grid points into regions with 
large spatial gradients in order to guarantee a high resolution of steep fronts and minimal 
truncation error of the spatial discretization. This situation is more complicated in the case of 
time-dependent problems where moving regions of high spatial activity are often encountered. 
A well-known approach is to formulate the original equations in a specific moving co-ordinate 
frame, e.g. in Lagrangian mass co-ordinates, in which the transformed problem is now stationary. 
This method is only suitable for problems with a constant propagation velocity or if the 
time-dependent co-ordinate transformation is known explicitly. In this section a moving grid 
method based on the investigations of Reference 11 is described in detail. In Reference 11 three 
different moving grid methods were tested with respect to reliability, robustness and efficiency. 

The general class of evolutionary problems considered can be written in the abstract notation 

(7) 

where L represents a differential operator involving only spatial derivatives. The function u(x ,  t )  
may exhibit the feature described above. The first step of the method consists of formulating the 

au 
at 
-(x,  t )=L[u(x,  t ) ] ,  a < x < b ,  t>O, 
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partial differential equation in a moving co-ordinate system (5 ,  z). The main idea behind this 
time-dependent transformation is to smooth the temporal behaviour of u and to concentrate grid 
points in regions of high spatial activity. The co-ordinate transformation between x, t and the new 
variables 5, z is of the form 

x = x ( 5 , 4 ,  t=t(<,z)rz .  (8) 
Then the total time derivative d/dt of u has been changed to 

With this time derivative the problem (7) can be transformed into the final evolutionary problem 
in the moving co-ordinate system 

The specific transformation is strongly coupled to u through 

m(s, t)ds 

m(s, t)ds 
, a < x < b ,  5(x, 0’ f 

f 
with the so-called monitor function m(x, t )  which may depend on u, u, and ux,: 

m(x, t )  = @(U(X, 0, ux(x, t), U x x k  0). (12) 

This function should reflect the spatial dependence of u and must be positive definite in order to 
guarantee the well-posedness of the transformation. The denominator in (1 1) normalizes the 
5-co-ordinate to the unit interval 0 < 5 < 1. The main idea behind this formulation is to find 
a co-ordinate system which minimizes the modulus of the time derivative (d/dt)(u(x(<, t), t)). This 
would allow much larger time steps than in original formulation (7). This condition is violated 
during the formation of a front close to the right boundary. At that period of time du/ax and 
ax/& are positive. Therefore the total time derivative du/dt is greater than au/at in (9). However, 
this behaviour changes when the front is resolved and starts to propagate. 

In the next step an equidistribution principle is applied to (10) and (11). Consider an equi- 
distant grid on [0, 11 for 5 with N P + 2  grid points: ti= i / ( N P +  l), i=O,  . . . , N P +  1. With this 
uniform 5-grid a non-uniform x-grid can be determined for a given u at time t through the 
transformation (1 1): 

X i + l  

m(s, t)ds=~(t), i =O,  . . . , N P ,  

with 

Equation (13) shows the meaning of the equidistribution principle. The grid points are distributed 
in such a way that the integral of the monitor function m is equal to the quantity c(t)  on every 
interval (xi, xi+ i=O, . . . , N P .  The next relation gives the final condition for the non-uniform 
x-grid 

a=x,(t)<x,(t)< . . . <XNp(t)<XNp+l(t)=b (15) 
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without calculating the specific quantity c(t), i.e. 

xi + 1 

m(s, t)ds= 6, m(s, t)ds, i =  1, . . . , N P .  s" X i - 1  

The positiveness of rn implies a strictly increasing sequence xo, . . . , x N P +  which is preserved 
during the entire time integration procedure. This is an important feature because it prevents 
node crossing which creates severe numerical problems. 

The spatial discretization of (10) leads to the semidiscrete formulation with the continuous 
variable t 

d Ui Ui + 1 (t)  - Ui - 1 (t)  dXi ( t )  +LA[U(t)], i = l ,  . . . , N P ,  dt (')= Xi + ( t )  - Xi - ( t )  dt 

where 

x i ( t ) = X ( t i ,  t), Ui(t)=u(x(ti, t), t), u(t)=(UO(t), . . . 9 u N P + l ( t ) ) T  

and LA is the difference operator of L. Applying the midpoint rule to discretize (16) leads to the 
following algebraic system for the node positions: 

(Xi-Xi-,)Mi-l=(Xi+l-Xi)Mi, i = l , .  . . , N P ,  (18) 
with 

The implicit ordinary differential equation system (17) together with the non-linear algebraic 
equations (18) represents a complete system for the time evolution of the grid points X i ( t )  and the 
approximate solution values Ui(t)  in these moving nodes. The values Uo(t) and U N P + , ( t )  are 
determined by appropriate boundary conditions. The grid point trajectories X o ( t )  and XNp+ l(t) 
are constant in time because of the fixed interval [a, b] with a = X o ( t )  and b = X N P + , ( t ) .  The 
simultaneous solution of (17) and (18) offers no opportunity to smooth the grid motion in space 
and time and makes the entire differential-algebraic system extremely stiff. As a consequence, 
a DAE solver would take very small time steps for the time integration of the system. 

A common approach to solve these problems is to determine the grid positions X i @ )  by a set of 
differential equations derived from (18).", l 3  The first step consists of introducing the point 
concentrations ni instead of the difference in the node positions: 

i=O, . . . , N P .  (19) 
1 n. = 

' X i + ' - x i '  

With this definition, (18) is changed to 

ni- ni 
Mi- '  Mi' 

- i= 1, . . . , N P .  

In order to prevent excessive grid distortion, the next step is to restrict the variations in the grid 
point concentration according to the following inequality:' 

K ni-' Xi+,-Xi ~ + l  -<-= <-, K > O .  
~ + 1  ni X i - X i - l  K 
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The ratio of the grid point distances of two neighbouring intervals is limited by the given 
expression with K x 2.0. This spatial smoothing is performed by replacing ni by the numerically 
diffused counterpart 

iii = ni-  K(K + l)(ni+ - 2ni + n i p  1), K >O. (22) 
Substitution into (20) leads to 

i i i - 1  i i i  

M i - l  Mi’ 
i=2 , .  . . , NP-1. -- -- 

These NP - 2 equations are completed by prescribing equal lengths for the first and second and 
respectively the last two intervals: 

no=n1, n N p - 1  = ~ N P  (24) 
The last step is the temporal smoothing of the grid motion by replacing iii by hi: 

where zG is the time constant of the moving grid points. The algebraic system of the node 
positions (1 8), which was replaced in several steps by equations for the node concentrations (20) 
and (23), now results in 

A i - 1  Ai 
i=2, . . . , NP-1. -- -- 

Mi-1 Mi 

The effect of this formulation is that the grid adapts on the time scale zG and neglect disturbances 
on shorter time scales. The final step is to formulate (26) for the grid point positions Xi(t) .  This 
system together with (24) and (25) leads to the implicit quasi-linear ordinary differential equation 
system for the moving nodes 

xi -  1 - 2 x i  + xi+ 1 =o, i =  1, NP, 

Xi=0,  i = O ,  NP+I, (27) 
2 

ZG a i , k x i + k = A ( X i - 2 , .  . . , X i + 2 ,  ui-1,. . . , ui+l), i = 2 , .  . . , NP-1, 
k =  - 2  

with 

The monitor function M i  is evaluated at the centre of the interval using the values of x and U at 
i and i + 1. The formulation (27), which is used instead of (1 8), describes the movement of the grid 
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point at a location Xi by considering the node velocity of the neighbouring nodes 
X i + k ,  k =  -2,- 1, 1 and 2. The combination of (17) and (27) gives rise to the semidiscretized 
formulation of (7) with a moving grid in the abstract notation 

A(Y)q=F(Y), (28) 
with the (2NP + 4) x (2NP + 4) matrix A and the solution vector 

y(t)=(Uo(t) ,  xo(t), . . . > Ui(t), x i ( t ) ,  . . . , U N p + l ( t ) ,  XNP+I(t))' .  

The time discretization is carried out with a solver for initial value problems of DAE systems. 

4. COMPUTATIONAL RESULTS 

The numerical method described above was applied to the non-stationary flame propagation 
problem (1H5). This results in the following differential-algebraic equation system of dimension 
N = ( N P  + 2) x (NST+ 4): 

B(Y)Y = F(Y), Y(0) = YO, (29) 
where B is a singular N x N matrix with an upper and lower bandwidth of 2 x (NST+4), F is 
a vector of dimension ( N P  + 2) x (NST+ 4) containing LA from (17) and from (27), 

y = ( y l , O ,  . . . 3 YNST,07 $07 PO, T O ,  zO,  . . * 3 y l , i ,  . . * > y N S T , i ,  

$ i ? P i ?  T i ? z i , .  . . 9 y l , N P + l ? .  . . 9 y N S T , N P + l ?  $ N P + l ,  P N P + 1 ,  T N P + l , Z N P + l ) T  

is the solution vector, 

x, j =  & ( $ j ,  t), 

P j = P j ( $ j >  t), 

?= T ( $ j >  t), 

z j = z ( $ j ,  t), 

$ j=$ , ( t ) ,  

i =  1, . . . , N S T ,  

j=o,  . . . ,NP+1 .  

The spatial dicretization of equation (4) leads to an algebraic equation which causes a singular 
matrix B. The implicit time discretization is performed with DASSL, a DAE solver using 
backward difference schemes with variable order and time step. The choice of an implicit time 
discretization is motivated by the large stiffness of (29) due to the presence of the reaction rate 
source terms ii in (1) and (2) and the small grid point distances. The grid parameter zG is another 
quantity which introduces stiffness into (29), as described in Reference 15. The specific monitor 
function is defined by 

The parameters c, and cy are weight coefficients which are necessary to scale the problem. 
The computational results presented in this section show two different situations of one- 

dimensional non-stationary laminar flame propagation and ignition in a closed vessel. In the first 
case these processes are simulated in a premixed H2/air mixture where the flame propagates into 
the unburnt gas until it reaches the wall. In the other case the simulation is performed for 
a premixed 03/02 mixture where the homogeneous ignition of the unburnt gas stops the flame 
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propagation before it reaches the wall. During the whole computation the parameter zG which 
controls the temporal smoothness of the grid motion was set to IO-’s, while the spatial 
smoothing parameter was set to IC = 2. The velocity of the grid depends on the chosen value of zG. 
A large zG results in a grid moving too slowly which cannot follow the steep solution gradients. As 
a consequence, the time derivative of the solution values in the moving grid points is large and the 
DAE solver has to take smaller time steps. On the other hand, a value of zG that is too small 
generates spurious oscillations in the grid point trajectories. This is discussed in Reference 15 
where the parameter A used there is comparable to l/zc. The parameter IC was selected in 
a problem-independent way based on suggestions made in References 11 and 13. Numerical 
experiments indicate that zG should be smaller than the time steps of the time discretization. 
Finally, the only parameters which have to be chosen by the user are the weight coefficients ct and 
cy and the fixed number of interior grid points, N P .  

All computations were performed using the FORTRAN subroutine packages TRANFIT and 
CHEMKIN for the evaluation of A, &, cp, cpi, hi and the chemical production rate ii in terms of 
the state variables T, p and yi, i =  1, . . . , NST,  and their gradients.l6. l7 These packages allow the 
flexible incorporation of detailed chemical kinetics and transport processes. 

4.1. Ignition andJlame propagation in a premixed H2/air mixture 

The simulation of ignition and flame propagation processes in an H2/air mixture exhibits the 
presence of various solution gradients in different regions while moving in a one-dimensional way 
through a vessel 1.0 cm in length. The reaction mechanism involves 26 elementary reactions of 
nine chemical species.’* The initial uniform species mass fractions are Yo, =0.2253, 
YH, = 0028678 and Y,, = 0.746022, while the other initial mass fractions were set to zero. The 
initial temperature and pressure were set to To = 700 K and po  = 1 bar. The mixture was ignited 
with a sufficient energy supply located in a region of 002  cm width at the boundary zo = 0 for 
a period of ti = 5.0 ps. The density of the energy source was set to D = 5 x lo6 erg cm- ’. After 

Figure 1. Grid point trajectories in Lagrangian co-ordinates for an H,/air mixture with initial temperature To=700 K 
and pressure p o  = 1 bar 
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Figure 2. Time evolution of the temperature for an H,/air mixture with initial temperature To=700 K and pressure 
p o  = 1 bar 

a short induction period the ignition of the mixture occurs in this small region and a flame 
propagation starts. The evolution of the whole process is demonstrated in Figures 1-3. The grid 
motion in the Lagrangian co-ordinate system is shown in Figure 1. The computation is performed 
on a uniform grid consisting of 70 grid points. The coefficients c, and c,, for the monitor function 
(30) were set to c, =(t,hmax/3000 K)’ and ~ , , = ( t , b ~ ~ ~ ) ~ .  The grid adaption starts locally in the vicinity 
of the heated region. This process is accelerated and extended by the rapid formation of a large 
temperature gradient during the ignition period (Figure 2), which forces the grid points to move 
into that region. At the moment of ignition nearly 45 grid points are concentrated in a small 
region 1/25th of the vessel length. During the following flame propagation the high spatial 
resolution of the flame and the reaction zone is maintained. This is demonstrated in Figure 3, 
which shows the concentration of the intermediate species HOz. It has a very sharp peak profile 
which is associated with the flame front. This moving structure is sufficiently resolved during the 
entire flame propagation, which continues until the flame reaches the wall after l50ps. The 
curvature of the grid trajectories in Lagrangian co-ordinates implies an increasing mass flux due 
to the relation 

_- - -pv. a* 
at 

This behaviour can be explained by the accelerated pre-reactions in the unburnt gas due to the 
temperature and pressure increases which are generated by the adiabatic expansion of the hot 
burnt gas. The typical computation time is 40 min on a SUN4 workstation and 4 min on 
a CRAY-YMP. 
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-0- 

Figure 3. Time evolution of the H 0 2  mass fraction for an H2/air mixture with initial temperature T0=700K and 
pressure p o  = 1 bar 

4.2. Ignition andyarne propagation in a premixed 03/02 mixture 

This simulation was performed in order to demonstrate the interdependence of laminar flame 
propagation and self-ignition in a closed vessel. The computation was performed with an initially 
uniform grid of 60 grid points. The weight coefficients for the monitor function were set to 
c, = (1+b,,,/3000 K)' and cy = 0. The one-dimensional vessel has a length of 1 cm and the initial 
mass fractions are Yo3 = 0-4, Yo, = 0.6 and Yo = 0. The initial temperature To = 550 K lies above 
the self-ignition temperature and the pressure is set to po  = 1 bar. A region of 0.04 cm length at the 
right boundary was supplied with energy until ti = 5 ps.  The density of the energy source was set 
to D = 5 x lo6 erg cm-l. The kinetics of the system was described by a system of seven elementary 
reactions including three species." The evolution of the system is presented in Figures 4-6. The 
ignition period is terminated after 3 p s  and the propagation of the flame front starts after that 
time. The grid point trajectories in Figure 4 show the capability of the grid to follow the 
combustion wave. Nearly 30 grid points are concentrated in this region of high spatial activity 
which has a width of 3.6% of the total vessel length. The sufficient resolution of the temperature 
profile can be seen in Figure 5. During the period of flame propagation the DAE solver selects 
time steps of about s. The typical flame propagation time based on the smallest grid spacing 
is 7 x lO-'s. This indicates that the time step of the integration is limited neither by the 
characteristic unsteadiness time nor by the grid adaption time zG. The grid point trajectories in 
Figure 4 show an accelerated flame front before the flame propagation is terminated by the 
homogeneous ignition of the unburnt gas. The reason is that the expansion of the hot burnt gas in 
the closed vessel causes an adiabatic compression of the unburnt gas which results in temperature 
and pressure increases. The temperature and O2 profiles in Figures 5 and 6 show the fast- 
vanishing gradients due to the rapid pre-reactions in front of the flame. Shortly after the 
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t 

Figure 4. Grid point trajectories in Eulerian co-ordinates for an 03/02 mixture with initial temperature To = 550 K and 
pressure p o  = 1 bar 

’ 2500 

2000 

Y 
1500 \ 

c 

I000 

5 0 0  

‘ 0  D 

Figure 5. Time evolution of the temperature for an 0JO2 mixture with initial temperature To = 550 K and pressure 
po = 1 bar 
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Figure 6. Time evolution of the 0, mass fraction for an 03/02 mixture with initial temperature To = 550 K and pressure 
p o  = 1 bar 

homogeneous ignition the grid points are distributed according to the remaining temperature 
gradient which was created by the external heat supply. This gradient is smoothed out by heat 
conduction later on. The computation time for this simulation is 10 min on a SUN4 workstation 
and 1 min on a CRAY-YMP. 

5. CONCLUSIONS 

In this paper a detailed presentation of a fully implicit moving grid method and its application to 
two confined laminar one-dimensional flame propagation problems are given. The main empha- 
sis is on a strong coupling between the solution of the approximated governing equations and the 
differential equations for a fixed number of grid points. The semidiscretization of these equations 
leads to a differential-algebraic system for the grid point position and the solution values in these 
nodes. This approach is motivated by the availability of solvers for the numerical solution of stiff 
differential-algebraic equations. In these solvers the time discretization is performed with implicit 
schemes. The computational efficiency is demonstrated by the large time steps taken by the solver 
during the propagation process and the high resolution of the various moving fronts. Although 
the formation of peaks and steep gradient regions was resolved, a drawback is that the rapid grid 
adaption requires small time steps during the formation process. Current investigations indicate 
that this moving grid method is also applicable to one-dimensional reacting shock waves and 
multiple-front propagation. 
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